Abstract

Size-dependent cloud droplet solute concentrations were measured using a two-stage fog water impactor at the summit station of Great Dun Fell (GDF) in the north of England. The measurements showed mostly higher concentrations in the small-droplet fraction. During one cloud event, however, higher solute concentrations were found in the larger-droplet fraction. In order to identify the factors governing the size dependence of cloud droplet solute concentrations, sensitivity studies by means of a diffusional growth model were performed. The time available for the droplets to grow was identified to be of great importance for the size dependence of solute concentrations. In cases when higher solute concentrations were found in the fraction containing the bigger droplets, the cloud droplets were relatively young having been formed by orographic lifting of the air at the GDF summit. For the other events the evidence indicates that the cloud was already formed far upwind from the summit site. Our experimental and model results imply that, after an initially strong decrease of solute concentrations with droplet size we would observe: • ⊎|increasing solute concentrations with increasing diameters during the initial stage of a cloud, e.g. near cloud base where the droplets have just been formed. The primary factors contributing to this behaviour are high peak supersaturations, large numbers of coarse aerosol particles, and high solubility of the aerosol particles. • ⊎|decreasing solute concentrations with increasing diameters in aged cloud parcels, such as those which can be observed high above the cloud base in cumuliform clouds or are advected to the observation point in the case of stratiform clouds. The primary factors contributing to this behaviour are low peak supersaturations, low numbers of coarse particles, and low solubility of the aerosol particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call