Abstract

Six Cys(2)His(2) zinc fingers (F1-6) comprise the DNA binding domain of metal-responsive element binding transcription factor-1 (MTF-1). F1-6 is necessary for basal and zinc-induced expression of metallothionein genes. Analysis of NMR structural and dynamic data for an F1-6 protein construct demonstrates that each zinc finger adopts a stable betabetaalpha fold in the presence of stoichiometric Zn(II), provided that all cysteine ligands are in a reduced state. Parallel studies of protein constructs spanning the four N-terminal core DNA binding fingers (F1-4) and two C-terminal low DNA affinity fingers (F5-6) reveal similar stable zinc finger structures. In both the F1-6 and F5-6 proteins, the finger 5 cysteines were found to readily oxidize at neutral pH. Detailed spectral density and hydrodynamic analysis of (15)N relaxation data revealed quasi-ordered anisotropic rotational diffusion properties of the six F1-6 zinc fingers that could influence MTF-1 DNA binding function. A more general effect on the rotational diffusion properties of Cys(2)His(2) zinc fingers was also uncovered that is dependent upon the position of each finger within multifinger domains. Analysis of NMR (1)H-(15)N-heteronuclear single quantum coherence spectral peak intensities measured as a function of added Zn(II) in conjunction with Zn(II) binding modeling studies indicated that the Zn(II) affinities of all MTF-1 zinc fingers are within approximately 10-50-fold. These analyses further suggested that metal sensing by MTF-1 in eukaryotic cells involves multiple zinc fingers and occurs over a 100-fold or less range of accessible Zn(II) concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.