Abstract

Catalyst testing in laboratory reactors requires careful experimentation and data interpretation. Current methods of catalyst development tend to be slow, laborious, and incapable of addressing most of the complex challenges, of multi-component chemical systems. In order to speed up this process in an efficient way, the six-flow parallel reactor technology is proposed. This enables parallel catalyst testing, which enhances the number of catalysts tested significantly and reduces the time for kinetic studies. Thus, operation costs are lowered and the success rate for important breakthroughs is increased. The six-flow set-up allows a proper catalyst testing, under more realistic and accurate conditions than in conventional combinatorial techniques, especially when the catalyst development stage is advanced and quantitative data are required. The application of this assessed technology is reviewed and combined with criteria for ideal behavior in reactor models and transport phenomena, crucial in order to achieve intrinsic catalyst performance data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call