Abstract

Falls and mobility deficits are common in people with multiple sclerosis (PwMS) across all levels of clinical disability. However, functional mobility observed in supervised settings may not reflect daily life which may impact assessments of fall risk and impairment in the clinic. To investigate this further, we compared the utility of sensor-based performance metrics from sit-stand transitions during daily life and a structured task to inform fall risk and impairment in PwMS. Thirty-seven PwMS instrumented with wearable sensors (thigh and chest) completed supervised 30-second chair stand tests (30CST) and underwent two days of instrumented daily life monitoring. Performance metrics were computed for sit-stand transitions during daily life and 30CSTs. EDSS sub scores and fall history were used to dichotomize participants into groups: pyramidal/no pyramidal impairment, sensory/no sensory impairment and high/low fall risk. The ability of performance metrics to discriminate between groups was assessed using the area under the curve (AUC). The feature that best discriminated between high and low fall risk was a chest acceleration measurement from the supervised instrumented 30CST (AUC = 0.89). Only chest features indicated sensory impairment, however the task was different between supervised and daily life. The metric that best discriminated pyramidal impairment was a chest-derived feature (AUC = 0.89) from supervised 30CSTs. The highest AUC from daily life was observed in faller classification with the average sit-stand time (0.81). While characterizing sit-stand performance during daily life may yield insights into fall risk and may be performed without a clinic visit, there remains value to conducting supervised functional assessments to provide the best classification performance between the investigated impairments in this sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.