Abstract

1. 1. Small particles prepared from spinach chloroplasts after treatment with digitonin, exhibited Photosystem I reactions, including phosphorylation, at rates as high as those in chloroplasts, whereas electron flow from water to NADP + or ferricyanide through Photosystem II was completely lost. Mediators of cyclic electron flow, such as pyocyanine, or N-methylphenazonium methosulfate in red light, had to be reduced to support photophosphorylation. Diaminodurene at high concentrations catalyzed cyclic phosphorylation under anaerobic conditions without addition of a reductant. In fact, addition of ascorbate gave rise to a marked inhibition which was released by addition of a suitable electron acceptor such as methylviologen. 2. 2. Under aerobic conditions a low O 2 uptake, observed in the presence of diaminodurene, was stimulated several-fold upon addition of methylviologen and was stimulated again several-fold on further addition of ascorbate. The rate of phosphorylation, however, remained the same. The low P/2e ratio obtained under these conditions was not decreased at lower light intensities. 3. 3. These findings suggest a phosphorylation site associated with cyclic electron flow through Photosystem I without participation of the electron carriers of Photosystem II. A non-cyclic electron flow to O 2 can be induced in this system by addition of methylviologen which effectively competes with the electron acceptors of cyclic flow. This non-cyclic electron flow still involves the same phosphorylation site. A scheme for electron transport and for the location of phosphorylation sites in chloroplasts is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.