Abstract
In this paper, we propose an SIS-type reaction-diffusion equations, which contains both direct transmission and indirect transmission via free-living and spatially diffusive bacteria/virus in the contaminated environment, motivated by the dynamics of hospital infections. We establish the basic reproduction number R₀ which can act as threshold level to determine whether the disease persists or not. In particular, if R₀<1 then="" the="" disease-free="" equilibrium="" is="" globally="" asymptotically="" stable="" whereas="". For the spatially homogeneous system, we investigate the traveling wave solutions and obtain that there exists a critical wave speed, below which there has no traveling waves, above which the traveling wave solutions may exist for small diffusion coefficient by the geometric singular perturbation method. The finding implies that great spatial transmission leads to an increase in new infection, while large diffusion of bacteria/virus results in the new infection decline for spatially heterogeneous environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.