Abstract

Chimeric antigen receptor (CAR)-T cells have been used successfully for cancer immunotherapy. While substantial tumor regression was observed in leukaemia and lymphoma, CAR therapy of solid tumors needs further improvement. A major obstacle to the efficiency of engineered T cells is posed by triggering of inhibitory receptors, for example programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), leading to an impaired antitumor activity. To boost CAR-T-cell function, we co-electroporated T cells with both, mRNA encoding a CAR specific for chondroitin sulphate proteoglycan 4 (CSPG4) and small-interfering RNAs (siRNAs) to downregulate PD-1 (siPD-1) and CTLA-4 (siCTLA-4). Flow cytometry revealed that activation-induced upregulation of both PD-1 and CTLA-4 was suppressed when compared to CAR-T cells electroporated with negative control siRNA. The siRNA transfection showed no influence on CAR expression of engineered T cells. Functionality assays were performed using PD-L1- and CD80-transfected melanoma cells endogenously expressing CSPG4. CAR-T cells transfected with siPD-1 alone showed improvement in cytokine secretion. Additionally, CAR-T cells transfected with either siPD-1 alone or together with siCTLA-4 exhibited a significantly increased cytotoxicity. No or only little effects were observed when CAR-T cells were co-transfected with siCTLA-4 only. Taken together, it is feasible to optimize CAR-T cells by co-transfection of CAR-encoding mRNA and siRNAs to downregulate inhibitory receptors. Our in vitro data indicate an improvement of the functionality of these CAR-T cells, suggesting that this strategy could represent a novel method to enhance CAR-T-cell immunotherapy of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.