Abstract

The lattice design and beam dynamics optimization for Sirius, a new low-emittance synchrotron light source presently under construction at the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas, Brazil, is presented. The electron storage ring is based on a five-bend achromat (5BA) design achieving a bare lattice emittance of 0.28 nm rad for a 3 GeV beam. The circumference of 518 m contains 20 achromatic straight sections of alternating 7 m and 6 m in length. An innovative approach is adopted to enhance the performance of the storage ring dipoles by combining low-field (0.58 T) magnets for the main beam deflection with a very short 2 T permanent-magnet superbend sandwiched in the center dipole. This superbend creates 12 keV critical photon energy dipole sources with modest total energy loss from dipoles. In addition it also creates a longitudinal dipole field gradient that reduces the emittance by about 10%. The optimized dynamic aperture allows for top-up operation with off-axis injection and the optimized energy acceptance allows for a total beam lifetime of around 11 h at nominal current with a third-harmonic cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.