Abstract

Organic anions can be excreted from the liver into the bile or back into the general circulation (sinusoidal efflux). It has previously been shown that the net sinusoidal efflux rate of dibromosulfophthalein from the perfused liver into the perfusate is the result of actual efflux from and reuptake into the liver, and can be strongly influenced by the presence of bovine serum albumin in the perfusion medium. The present study investigated whether the influence of albumin on the net sinusoidal efflux process is albumin-specific or whether other binding proteins could have a similar effect on the sinusoidal efflux. Using a single-pass liver perfusion technique and short-lasting (pulse) protein infusions, the stimulatory effect of a wide range of dibromosulfophthalein binding proteins on the sinusoidal efflux process were determined. These experiments showed that all the serum albumins tested as well as the liver cytosolic binding proteins fatty acid binding protein and ligandin (glutathione S-transferase) stimulated this process. The other proteins tested, bovine beta lactoglobulin-b, human gamma globulin and chicken egg lysozyme showed no stimulatory effect, despite relatively high equilibrium binding of dibromosulfophthalein. No clear-cut relationship was found between the equilibrium unbound ligand concentration as measured in perfusate and the stimulatory effect, suggesting absence of equilibrium binding in the sinusoids. Equilibrium binding of dibromosulfophthalein to chicken serum albumin and ligandin as well as the dissociation rate constants were determined in vitro with rapid filtration techniques.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.