Abstract

Some properties that nominally involve the eigenvalues of the Gaussian Unitary Ensemble (GUE) can instead be phrased in terms of singular values. By discarding the signs of the eigenvalues, we gain access to a surprising decomposition: the singular values of the GUE are distributed as the union of the singular values of two independent ensembles of Laguerre type. This independence is remarkable given the well-known phenomenon of eigenvalue repulsion. The structure of this decomposition reveals that several existing observations about large [Formula: see text] limits of the GUE are in fact manifestations of phenomena that are already present for finite random matrices. We relate the semicircle law to the quarter-circle law by connecting Hermite polynomials to generalized Laguerre polynomials with parameter [Formula: see text]. Similarly, we write the absolute value of the determinant of the [Formula: see text] GUE as a product [Formula: see text] independent random variables to gain new insight into its asymptotic log-normality. The decomposition also provides a description of the distribution of the smallest singular value of the GUE, which in turn permits the study of the leading order behavior of the condition number of GUE matrices. The study is motivated by questions involving the enumeration of orientable maps, and is related to questions involving powers of complex Ginibre matrices. The inescapable conclusion of this work is that the singular values of the GUE play an unpredictably important role that had gone unnoticed for decades even though, in hindsight, so many clues had been around.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.