Abstract
One of the recent methods for the topic modeling is separable nonnegative matrix factorization (SNMF). In general, SNMF consists of three main steps, which are, generating a word co-occurrence matrix, selecting anchor words, and recovering a topic matrix. The anchor words strongly influence the interpretability of extracted topics. In this paper, we propose a new method for selecting the anchor words by using singular value decomposition (SVD). We assume that the most dominant words in each latent semantics created by SVD are the potential candidates for the anchor words. Our simulations show that the SVD-based anchor word selection method can reach better interpretability scores of extracted topics than the common convex hull-based method on two of three datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.