Abstract

The natural nonproteinogenic α-amino acid 1-aminocyclopropanecarboxylic acid (Ac(3)c) has been vaporized by laser ablation and studied in the gas phase by molecular-beam Fourier transform microwave spectroscopy. Comparison of the experimental rotational and (14)N nuclear quadrupole coupling constants with the values predicted ab initio for these parameters has allowed the unambiguous identification of three Ac(3)c conformers differing in the hydrogen bonding pattern. Two of them resemble those characterized before for the coded aliphatic α-amino acids. Remarkably, a third conformer predicted to be energetically accessible for all of these amino acids but never observed (the so-called "missing conformer") has been found for Ac(3)c, close in energy to the global minimum. This is the first time that such a conformer, stabilized by an N-H···O(H) hydrogen bond, is detected in the rotational spectrum of a gaseous α-amino acid with a nonpolar side chain. The conjugative interaction established between the cyclopropane ring and the adjacent carbonyl group seems to be responsible for the unique conformational properties exhibited by Ac(3)c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.