Abstract

The singlet scalar model is a minimal extension of the Standard Model that can explain the dark matter. We point out that in this model the dark matter constraint can be satisfied not only in the already considered WIMP regime but also, for much smaller couplings, in the Feebly Interacting Massive Particle (FIMP) regime. In it, dark matter particles are slowly produced in the early Universe but are never abundant enough to reach thermal equilibrium or annihilate among themselves. This alternative framework is as simple and predictive as the WIMP scenario but it gives rise to a completely different dark matter phenomenology. After reviewing the calculation of the dark matter relic density in the FIMP regime, we study in detail the evolution of the dark matter abundance in the early Universe and the predicted relic density as a function of the parameters of the model. A new dark matter compatible region of the singlet model is identified, featuring couplings of order 10−11 to 10−12 for singlet masses in the GeV to TeV range. As a consequence, no signals at direct or indirect detection experiments are expected. The relevance of this new viable region for the correct interpretation of recent experimental bounds is emphasized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.