Abstract

The lamprey is considered the most primitive living vertebrate and its neurofilaments (NFs) are unique in being homopolymers of a single 180 kDa subunit (NF-180). Previous immunologic studies have suggested that the sidearm of NF-180 is highly phosphorylated selectively in the largest diameter axons. We report in this study the isolation and characterization of cDNA clones encoding the NF-180 lamprey protein. In situ hybridization with digoxigenin-labeled cRNA revealed NF-180 message exclusively in neurons with long axons, such as reticulospinal neurons and cranial motor neurons. The core of NF-180 was similar in structure to those of mammalian neurofilaments, but surprisingly, the carboxy sidearm lacked the multiphosphorylation repeats characteristic of higher vertebrate and invertebrate neurofilaments. Overall there was a paucity of potential phosphorylation sites in the NF-180 carboxy-terminus compared to NF-M and NF-H of mammals, fish and squid. This, along with the highly acidic nature of the NF-180 sidearm, makes it unlikely that phosphorylation of sidearm residues regulates interfilament spacing and axon diameter through global electrostatic repulsion of the carboxy-terminus away from the filament backbone. Furthermore, the expression of a single neurofilament subunit in the lamprey that is most similar to the NF-M of higher vertebrates suggests that all three mammalian neurofilament subunits evolved from a single NF-M-like precursor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.