Abstract

In this work we consider the uniform capacitated single-item single-machine lot-sizing problem with continuous start-up costs. A continuous start-up cost is generated in a period whenever there is a nonzero production in the period and the production capacity in the previous period is not saturated. This concept of start-up does not correspond to the standard (discrete) start-up considered in previous models, thus motivating a polyhedral study of this problem. In this work we explore a natural integer programming formulation for this problem. We consider the polytope obtained as convex hull of the feasible points in this problem. We state some general properties, study whether the model constraints define facets, and present an exponentially-sized family of valid inequalities for it. We analyze the structure of the extreme points of this convex hull, their adjacency and bounds for the polytope diameter. Finally, we study the particular case when the demands are high enough in order to require production in all the periods. We provide a complete description of the convex hull of feasible solutions in this case and show that all the inequalities in this description are separable in polynomial time, thus proving its polynomial time solvability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.