Abstract
We develop a route to prepare two types of cellulose nanocrystals (CNCs, CNC1 and CNC2) from a unique biomass resource, the fruit shell of Camellia oleifera Abel (SCOA), by integrating sulfuric acid hydrolysis and high-pressure homogenization and examine the effects of hydrolysis time on characteristics of the CNCs during the process. The CNCs exhibit different evolutions in size, morphology, surface charge, and crystallinity with increasing hydrolysis time. While both the CNCs have high crystallinity, CNC1 is of rod-like character with a relatively low aspect ratio, and CNC2 exhibits a hairy appearance with a high aspect ratio. We highlight that controlled acid hydrolysis contributes to the formation of weak spots with an increased susceptibility for homogenizing cellulosic solid residues into hairy CNCs. This is a good step toward tailoring CNC properties in a conventional and scalable approach to maximize their potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.