Abstract

We have characterized the double-stranded DNA (dsDNA) binding properties of RecA protein, using an assay based on changes in the fluorescence of 4′,6-diamidino-2-phenylindole (DAPI)-dsDNA complexes. Here we use fluorescence, nitrocellulose filter-binding, and DNase I-sensitivity assays to demonstrate the binding of two duplex DNA molecules by the RecA protein filament. We previously established that the binding stoichiometry for the RecA protein-dsDNA complex is three base-pairs per RecA protein monomer, in the presence of ATP. In the presence of ATPγS, however, the binding stoichiometry depends on the MgCl2 concentration. The stoichiometry is 3 bp per monomer at low MgCl2 concentrations, but changes to 6 bp per monomer at higher MgCl2 concentrations, with the transition occurring at approximately 5 mM MgCl2. Above this MgCl2 concentration, the dsDNA within the RecA nucleoprotein complex becomes uncharacteristically sensitive to DNase I digestion. For these reasons we suggest that, at the elevated MgCl2 conditions, the RecA-dsDNA nucleoprotein filament can bind a second equivalent of dsDNA. These results demonstrate that RecA protein has the capacity to bind two dsDNA molecules, and they suggest that RecA or RecA-like proteins may effect homologous recognition between intact DNA duplexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.