Abstract
The numerical simulation of three model viscoelastic extensional flows is considered : sink flow, model draw-down and conical section draw-down. A transient finite element scheme with a pressure correction method is employed to analyse the numerical treatment of such problems for Oldroyd-B and Phan-Thien/Tanner constitutive models. Both decoupled and coupled formulations are compared for these highly convective flows and effective mechanisms are proposed for removing numerical oscillations in the temporally developing solution. In pure viscoelastic extensional flow from an initial stress-free state, the maximum stress level attained decreases with increase in material relaxation time. When this is followed by stress relaxation, as in conical section draw-down, increasing the relaxation time inhibits stress decay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.