Abstract

The cohesive segments method is a finite element framework that allows for the simulation of the nucleation, growth and coalescence of multiple cracks in solids. In this framework, cracks are introduced as jumps in the displacement field by employing the partition of unity property of finite element shape functions. The magnitude of these jumps are governed by cohesive constitutive relations. In this paper, the cohesive segments method is extended for the simulation of fast crack propagation in brittle solids. The performance of the method is demonstrated in several examples involving crack growth in linear elastic solids under plane stress conditions: tensile loading of a block; shear loading of a block and crack growth along and near a bi-material interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.