Abstract

When using Boyle's Law for thoracic gas volume (Vtg) measurement, it is generally assumed that the alveolar pressure (Palv) does not differ from barometric pressure (Pbar) at the start of rarefaction and compression and that the product of the change in volume and pressure (delta P x delta V) is negligibly small. In a gentle panting maneuver in which the difference between Palv and Pbar is small, errors introduced by these assumptions are likely to be small; however, this is not the case when Vtg is measured using a single vigorous inspiratory effort. Discrepancies in the Vtg between the "complex" version of Boyle's Law, which does not ignore delta P x delta V and accounts for large swings in Palv, and the "simplified" version, during both a panting maneuver and a single inspiratory effort were calculated for normal control subjects and patients with cystic fibrosis or asthma. Defining the Vtg from the complete version as "correct," the errors introduced by the simplified version ranged from -3 to +3% for the panting maneuver whereas they ranged from 2 to 9% for the inspiratory maneuver. Using the simplified equation, the Vtg for the inspiratory maneuver was 0.135 +/- 0.237 L greater (p < 0.02) than for the panting maneuver. This discrepancy disappeared when the complete equation was used. While the errors introduced by the use of the simplified version of Boyle's Law are small, they are systematic and unnecessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.