Abstract
The simple substitution property provides a systematic and easy method for proving a theorem from the additional axioms of intermediate prepositional logics. There have been known only four intermediate logics that have the additional axioms with the property. In this paper, we reformulate the many valued logics S' n defined in Godel [3] and prove the simple substitution property for them. In our former paper [9], we proved that the sets of axioms composed of one prepositional variable do not have the property except two of them. Here we provide another proof for this theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.