Abstract

The inter-scale energy transfer process is one of the key issues in the multi-scale nature of turbulent flows. A direct numerical simulation of homogeneous isotropic turbulent flows is conducted and the energy transfer is studied in detail in spectral space. The band-to-band energy transfer function involving non-local triad interactions with large scale modes peaks sharply. The similarity of this non-local energy transfer function is observed in both the shape and the amplitude. In addition, the similarity is satisfied in both the inertial subrange and dissipation range, implying that it is a general property of turbulence. The amplitude is determined by wave numbers p and q independently in a power law, with the power rates −3 and −2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call