Abstract
The Silicon Tracker/Converter of the Gamma-ray Large Area Space Telescope (GLAST) will have an active area of 80 m2, representing one of the largest planned applications of the silicon-strip detector technology. The large number of channels (1.3 million) to read out, together with the requirement that the tracker provide the trigger to the data acquisition, force the readout electronics to be of very low noise. Furthermore, to t into the power constraints of the satellite environment, the electronics must have an ultra-low power consumption. To fulll these requirements, plus others imposed by the space environment, such as redundancy, a mixed mode CMOS front-end readout chip and a digital readout controller chip have been designed and prototyped. In this article, we present the status of the readout electronics and the results from a test-beam study with a small GLAST tracker prototype. ( 1999 Elsevier Science B.V. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.