Abstract

DEK involves in the modulation of cell proliferation, differentiation, apoptosis, migration and cell senescence. However, direct genetic evidence proving the functions of DEK in disease resistance against pathogens is still deficient. In the present study, four DEKs were identified in tomato genome and their roles in disease resistance in tomato were analyzed. The expression levels of DEKs were differently induced by Botrytis cinerea, Pseudomonas syringae pv. tomato (Pst) DC3000 and defense-related signaling molecules (such as jasmonic acid, aethylene precursor and salicylic acid). The DEKs’ silencing by virus induced gene silencing led to decreased resistance against B. cinerea or Pst DC3000. The underlying mechanisms may be through the upregulation of the accumulation of reactive oxygen species (ROS) and the changed expression levels of defense-related genes by pathogen inoculation. These results indicate that DEKs involve in disease resistance against different pathogens and thus broaden the knowledge of DEK genes’ function in tomato.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call