Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Highlights
Actin polymerization is essential for cell migration and various cellular biological processes
The increase of exercise activity, the increase of the cell proliferation rate, and the removal of cell–cell contact are the chief culprits of tumor origination, and metastasis is the cause of the largest-scale proportion of cancer deaths [31]
The key factor is the dynamic reorganization of the actin skeleton, and microfilaments are attached to a special position on the plasma membrane
Summary
Edited by: Cecilia Ana Suarez, Consejo Nacional de Investigaciones Cientıficas y Tecnicas (CONICET), Argentina. Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. The function of actin polymers is to produce actin filaments, so it is called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.