Abstract

In the present study we report on the formation mechanism of some binary Al-TM and ternary Al-Cu-TM (TM = transition metal) quasicrystals. We have found that the formation mechanism of quasicrystalline phases in the binary Al-TM system takes place at extremely high solidification rates, is linked to the location of the transition metal in the periodic table, depends upon the atomic radius ratio of the constituents, is composition sensitive, and as a result is strongly affected by the effective atomic radius ratio (a eff ). Applying empirical criteria on the formation of ternary Al-Cu-TM quasicrystals we were able to calculate the composition range at which the formation tendency and stability of quasicrystalline phases is enhanced. The method presented can be viewed as an empirical criterion to find new and high quality quasicrystalline materials and to optimize the quasicrystalline material composition. Furthermore, it was observed that the stabilization mechanism of the quasicrystalline Al-Cu-(Fe, Co, Ru, Rh, Os, Ir) phases takes place when the atomic ratio (TM+Cu)/Al ranges from 0.46 to 0.69 and for a eff values between 4.10 and 7.30. At the same valence electron concentration, metastable icosahedral Al-Cu-(Cr, Mn) phases are formed at relatively smaller atomic ratios (TM+Cu)/Al and having higher a eff values in comparison to those of the stable D- and I-phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.