Abstract

BackgroundWhen a researcher uses a program to align two proteins and gets a score, one of her main concerns is how often the program gives a similar score to pairs that are or are not in the same fold. This issue was analysed in detail recently for the program TM-align with its associated TM-score. It was shown that because the TM-score is length independent, it allows a P-value and a hit probability to be defined depending only on the score. Also, it was found that the TM-scores of gapless alignments closely follow an Extreme Value Distribution (EVD).The program ProtDeform for structural protein alignment was developed recently and is characterised by the ability to propose different transformations of different protein regions. Our goal is to analyse its associated score to allow a researcher to have objective reasons to prefer one aligner over another, and carry out a better interpretation of the output.ResultsThe study on the ProtDeform score reveals that it is length independent in a wider score range than TM-scores and that PD-scores of gapless (random) alignments also approximately follow an EVD. On the CASP8 predictions, PD-scores and TM-scores, with respect to native structures, are highly correlated (0.95), and show that around a fifth of the predictions have a quality as low as 99.5% of the random scores. Using the Gold Standard benchmark, ProtDeform has lower probabilities of error than TM-align both at a similar speed. The analysis is extended to homology discrimination showing that, again, ProtDeform offers higher hit probabilities than TM-align. Finally, we suggest using three different P-values according to the three different contexts: Gapless alignments, optimised alignments for fold discrimination and that for superfamily discrimination.In conclusion, PD-scores are at the very least as valuable for prediction scoring as TM-scores, and on the protein classification problem, even more reliable.

Highlights

  • The great availability of protein classifiers is motivated by several circumstances: the growing number of protein structures in the PDB [1], the still unknown gold score for protein classification [2] and the lack of a structural aligner with low error probabilities

  • We have successfully proved that ProtDeform is one of the best structural classifiers including Dali [4]; Matras [5]; MATT [6], PPM [7]; SSAP [8]; Rash [9] and TM-align [10] on benchmarks based on standard protein classifications (CATH [11] as well as SCOP [12]) and hand curated alignments (SISYPHUS [13])

  • We demonstrate that the scores are not truly length independent except in the range corresponding to medium-to-high hit probabilities

Read more

Summary

Introduction

The great availability of protein classifiers is motivated by several circumstances: the growing number of protein structures in the PDB [1], the still unknown gold score for protein classification [2] and the lack of a structural aligner with low error probabilities These needs prompted us to develop an aligner, ProtDeform [3], a model and algorithm for protein comparison using a sequence of local rigid transformations to find proper alignments to match the structures. When a researcher uses a program to align two proteins and gets a score, one of her main concerns is how often the program gives a similar score to pairs that are or are not in the same fold This issue was analysed in detail recently for the program TM-align with its associated TM-score. Our goal is to analyse its associated score to allow a researcher to have objective reasons to prefer one aligner over another, and carry out a better interpretation of the output

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.