Abstract
In recent decades, artificial neural networks (ANNs) have been used for the prediction of concentration of air pollutants in urban areas. Beside meteorological variables, periodic parameters, such as hour of the day or month of the year, have been frequently used to improve the performance of ANN models by representing variations of emission sources. In this paper, different forms of periodic parameters, i.e. smoothed cosines based approximation and normalized historical mean values, were combined with meteorological variables in order to analyze the sensitivity of the ANN model to them. Ward neural network and general regression neural network were used and compared for the prediction of daily average concentrations of SO2 and NOx in Belgrade, Serbia. Multiple performance metrics have demonstrated that models based on periodic parameters outperform the corresponding models that used only meteorological variables as inputs. Also, a newly proposed normalized historical mean MOYnmv (month of the year) proved to be more appropriate in majority of cases than the traditional cosines based approximation (MOYcos). A simple rule for the selection of the most efficient MOY form was defined depending on their mutual correlation (r). Results have shown that if MOYnmv is correlated with MOYcos with r > 0.8, then ANN models what uses MOYnmv provide more accurate predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.