Abstract

Objective To investigate the significance of PAX8-PPARγ expression in thyroid cancer and the application of a PAX8-PPARγ-targeted ultrasound contrast agent in the early diagnosis of thyroid cancer. Methods In this study, the expression of PAX8-PPARγ in thyroid cancer tissues, paracancer groups, and normal thyroid tissues was detected by western and immunohistochemical techniques; the effects of PAX8-PPARγ expression inhibition on thyroid cancer cell growth, clonogenic ability, and antiapoptosis were examined. The terminal carboxylactic acid/hydroxyacetic acid copolymer (PLGA-COOH) nanoparticles were prepared by the double emulsification solvent volatilization method. The in vitro cytotoxicity of the targeted contrast agent was detected by MTS and other methods; LD50 was used to evaluate its short-term in vivo toxicity after intraperitoneal injection in mice. Results PAX8-PPARγ expression was significantly increased in thyroid cancer tissues, and the expression level of PAX8-PPARγ was closely correlated with TNM staging and lymph node metastasis (P < 0.05). In addition, PAX8-PPARγ was also expressed at high levels in thyroid cancer cell lines relative to normal thyroid cells. MTS experiments showed that the PAX8-PPARγ-targeted ultrasound nanocontrast agent had no significant toxic side effects on thyroid cells; countess observed that the contrast agent had no effect on cell survival and mortality; the LD50 assay showed that the targeted contrast agent had a wide safety range. Western blot showed the expression of caspase-3, BAX, and Bcl-2 in thyroid cancer cells, indicating that the nanocontrast agent has a good biosafety. In vitro targeting experiments showed that there were more nanospheres aggregated around the cells in the targeted contrast group. In vivo targeting imaging of nude mice revealed that the ultrasound signal was significantly enhanced in the targeted group compared with the nontargeted group after 20 min of LIFU irradiation. Conclusion PAX8-PPARγ overexpression in thyroid cancer cell lines and thyroid cancer tissues promoted the proliferation and antiapoptotic ability of thyroid cancer cells and promoted the tumorigenic ability in nude mice in vivo. We successfully prepared a PAX8-PPARγ-targeted ultrasound nanocontrast agent, which has regular morphology, uniform size, and high stability, and its liquid-gas phase change can be promoted at lower temperature. Therefore, this contrast agent can achieve US-targeted imaging and temperature phase transition function, and may have enhanced ultrasound imaging potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call