Abstract

This paper is a report into an experimental and theoretical investigation of the effect of oil thermal properties on the performance of a tilting-pad thrust bearing. Three oils, namely poly-α-olefin, ester and mineral base, were chosen for this study. These oils all have same viscosity grade (ISO VG46) but differ in their rates of viscosity variation with temperature and in their heat capacity and thermal conductivity values. Mineral base oil of a higher viscosity grade (ISO VG68) was also analyzed for comparison. Experimental data were obtained from an equalizing tilting-pad thrust bearing with an outer diameter of 228.6 mm operating in a flooded lubrication mode. Simultaneous measurements of pad and collar temperatures, friction torque, pressures and oil film thickness were taken. In the tests, oil supply temperature and flow rate were held constant for all load-speed combinations. The theoretical analysis of oil performance was based on a three-dimensional TEHD model. In the analysis, thermal effects were locally taken into account and heat transfer into the pads was considered. The displacements of the active surface of the pads, due to pressure and temperature fields, were determined. The effect of initial pad crowning on the oil film thickness is discussed. Experimental and theoretical results are compared and analyzed in terms of the inlet and outlet oil film thickness, bearing operating temperature and power loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call