Abstract

There is a continuous urgent need to explore the pathogenesis and biochemical changes within the infarcted area during acute ischemic stroke (IS). Matrix metalloproteinases (MMPs), prevailing extracellular endopeptideses, can digest proteins located extracellulary, e.g. collagen, proteoglycans, elastin or fibronectin. Among MMPs, gelatinases (MMP-2 and MMP-9) are the most investigated enzymes. Gelatinases possess the ability to active numerous pro-inflammatory agents as chemokine CXCL-8, interleukin 1β or tumor necrosis factor α. Moreover, due to digestion of collagen type IV (the component of basal membranes) and tight junction proteins (TJPs) they facilitate to cross the endothelium by leukocytes. Due to the significant role of gelatinases during brain ischemia, their selective inhibition seems to be an interesting kind of treatment of acute stroke. The synthetic inhibitors of gelatineses decrease the infarct volume in animal models of IS. In clinical practice statins, the lipid-lowering drugs possess the ability to inhibit the activity of MMP-9 during acute IS. This review briefly provides the most important information about the involvement of MMP-2 and MMP-9 in the pathogenesis of brain ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call