Abstract

We examined the effect of range size in commonly applied macroecological analyses using continental distribution data for all 550 Neotropical palm species (Arecaceae) at varying grain sizes from 0.5° to 5°. First, we evaluated the relative contribution of range‐restricted and widespread species on the patterns of species richness and endemism. Second, we analysed the impact of range size on the predictive value of commonly used predictor variables. Species sequences were produced arranging species according to their range size in ascending, descending, and random order. Correlations between the cumulative species richness patterns of these sequences and environmental predictors were performed in order to analyse the effect of range size. Despite the high proportion of rare species, patterns of species richness were found to be dominated by a minority of widespread species (∼20%) which contained 80% of the spatial information. Climatic factors related to energy and water availability and productivity accounted for much of the spatial variation of species richness of widespread species. In contrast, species richness of range‐restricted species was to a larger extent determined by topographical complexity. However, this effect was much more difficult to detect due to a dominant influence of widespread species. Although the strength of different environmental predictors changed with spatial scale, the general patterns and trends proved to be relatively stabile at the examined grain sizes. Our results highlight the difficulties to approximate causal explanations for the occurrence of a majority of species and to distinguish between contemporary climatic factors and history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call