Abstract

Fast spiking (FS) interneurons in the striatum are hypothesised to control spike timing in the numerous medium spiny (MS) projection neurons by inhibiting or delaying firing in the MS neurons. The FS neurons are connected to each other through electrical gap junctions. This might synchronise the FS neurons, leading to increased influence on target neurons. Here, we explore the possible difference between proximal and distal gap junction locations. Somatic and distal dendritic gap junctions with equal effective coupling coefficient, as defined for steady-state somatic inputs, showed significantly different effective coupling coefficient with transient inputs. However, the ability to synchronise spiking in pairwise coupled FS neurons, which received synaptic inputs as during striatal up-state periods, was as effective with distal gap junctions as with proximal ones. Proximal gap junctions, however, caused synchronisation within a more precise time window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.