Abstract

Direct laser deposition (DLD) is an additive manufacturing process that builds up a part layer-by-layer by fusing metal powder to a solid substrate. A coaxial laser and powder delivery head is commonly used, and here a critical process variable is the standoff distance between the nozzle and the material deposition point. This contribution investigates the role of this variable and the effect that it has on the final part geometry. The experimental results show that good layer consistency can, in fact, be obtained with no movement of the substrate between layers for more than 20 layers, or 10 mm under tested conditions, and that poorer results are obtained by regular movement of the substrate by a badly chosen constant amount. A theoretical analysis of the situation establishes a method to estimate melt pool size using an analytically calculated temperature near the heat source. Based on this, simple heat and mass flow models are established to allow some of the results to be explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.