Abstract

Abstract Five decades of histological, electrophysiological, pharmacological and biochemical investigations exist, but relatively little is known regarding the ionic mechanisms underlying the action potential variations in the ventricle associated with healthy and disease conditions. The computational modelling in murine ventricular myocytes can complement our knowledge of the experimental data and provide us with more quantitative descriptions in understanding different conditions related to normal and disease conditions. This paper initially reviews the theoretical modelling for cardiac ventricular action potentials of various species and the related experimental work. It then focuses on the progress of computational modelling of cardiac ventricular cells for normal, diabetic and spontaneously hypertensive rats. Also presented is the recent modelling efforts of the action potential in mouse ventricular cells. The computational insights gained into the ionic mechanisms in rodents will enhance our understanding of the heart and provide us with new knowledge for future studies to treat cardiac diseases in children and adults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.