Abstract

Hearths were constructed and used at Paleolithic cave and rockshelter sites in Africa, Europe and Asia as early as the late Lower Paleolithic period. The advantages of the use of fire have been widely researched for the last decades. However, only a few studies have focused on the possible negative impact of the use of fire within closed spaces, such as caves. One of the major negative fire products is smoke, which has an immediate, as well as long-term, effect on humans and may even prevent cave occupation after a short period. In this study we propose a basic air circulation model based on thermodynamics to represent smoke ventilation in caves. We employ this model to shed light on the relationship between smoke dispersal and cave structure, opening dimensions, hearth characteristics, and seasonal temperature fluctuations. We further show that hearth location was crucial in allowing humans to occupy prehistoric caves while using fire on a regular basis. We present preliminary insights from specific case studies, demonstrating the potential of understanding smoke ventilation in reconstructing the hearth season of use and location within the cave.

Highlights

  • Human use of fire in the Paleolithic period has been widely researched in recent decades due to its major implications for the understanding of human adaptation and evolution (Gowlett & Wrangham 2013; Sandgathe & Berna 2017; Wrangham 2009; Wrangham 2017)

  • To facilitate an understanding of the effect of smoke dispersal on cave occupation, we describe the by-products of wood burning: the ash that remains in the area of the hearth and the smoke pollution emitted into the air (Aldeias 2017)

  • We showed that hearth location and season of use are not randomly determined and can be explained using the air circulation model

Read more

Summary

METHOD

The Significance of Air Circulation and Hearth Location at Paleolithic Cave Sites. One of the major negative fire products is smoke, which has an immediate, as well as long-term, effect on humans and may even prevent cave occupation after a short period. In this study we propose a basic air circulation model based on thermodynamics to represent smoke ventilation in caves. We employ this model to shed light on the relationship between smoke dispersal and cave structure, opening dimensions, hearth characteristics, and seasonal temperature fluctuations. We present preliminary insights from specific case studies, demonstrating the potential of understanding smoke ventilation in reconstructing the hearth season of use and location within the cave

Introduction
Discussion and Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call