Abstract
Abstract Let k ≥ 1 be an integer, and let D = (V; A) be a finite simple digraph, for which d D− ≥ k − 1 for all v ɛ V. A function f: V → {−1; 1} is called a signed k-dominating function (SkDF) if f(N −[v]) ≥ k for each vertex v ɛ V. The weight w(f) of f is defined by $$ \sum\nolimits_{v \in V} {f(v)} $$. The signed k-domination number for a digraph D is γkS(D) = min {w(f|f) is an SkDF of D. In this paper, we initiate the study of signed k-domination in digraphs. In particular, we present some sharp lower bounds for γkS(D) in terms of the order, the maximum and minimum outdegree and indegree, and the chromatic number. Some of our results are extensions of well-known lower bounds of the classical signed domination numbers of graphs and digraphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.