Abstract

In the present work the quantification of the time-lasting effects of production mechanisms in homogeneous isotropic turbulence decay is addressed. The analysis is developed through the use of theoretical tools as well as numerical calculations based on the eddy damped quasinormal Markovian (EDQNM) model. In both cases a modified Lin equation is used, which accounts for production mechanisms as proposed by Meldi, Lejemble, and Sagaut [“On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence,” J. Fluid Mech. 756, 816–843 (2014)]. The approaches used show that an exponential decay law can be observed if the intensity of the forcing is strong enough to drive the turbulence dynamics, before a power-law decay is eventually attained. The EDQNM numerical results indicate that the exponential regime can persist for long evolution times, longer than the observation time in grid turbulence experiments. A rigorous investigation of the self-similar behavior of the pressure spectrum has been performed by a comprehensive comparison of EDQNM data with direct numerical simulation (DNS)/experiments in the literature. While DNS and free decay EDQNM simulations suggest the need of a very high Reλ threshold in order to observe a clear −7/3 slope of the pressure inertial range, experimental data and forced EDQNM calculations indicate a significantly lower value. This observation suggests that the time-lasting effects of production mechanisms, which cannot be excluded in experiments, play a role in the lack of general agreement with classical numerical approaches. These results reinforce the urge to evolve the numerical simulation state of the art towards the prediction of realistic physical states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call