Abstract
We identify a combinatorial quantity (the alternating sum of the h-vector) defined for any simple polytope as the signature of a toric variety. This quantity was introduced by R. Charney and M. Davis in their work, which in particular showed that its nonnegativity is closely related to a conjecture of H. Hopf on the Euler characteristic of a nonpositively curved manifold. We prove positive (or nonnegative) lower bounds for this quantity under geometric hypotheses on the polytope and, in particular, resolve a special case of their conjecture. These hypotheses lead to ampleness (or weaker conditions) for certain line bundles on toric divisors, and then the lower bounds follow from calculations using the Hirzebruch signature formula. Moreover, we show that under these hypotheses on the polytope, the ith L-class of the corresponding toric variety is (−1)i times an effective class for any i.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.