Abstract
In the noisy cellular environment, stochastic fluctuations at the molecular level manifest as cell-cell variability at the population level that is quantifiable using high-throughput single-cell measurements. Such variability is rich with information about the cell's underlying gene regulatory networks, their architecture and the parameters of the biochemical reactions at their core. We report a novel method, called Inference for Networks of Stochastic Interactions among Genes using High-Throughput data (INSIGHT), for systematically combining high-throughput time-course flow cytometry measurements with computer-generated stochastic simulations of candidate gene network models to infer the network's stochastic model and all its parameters. By exploiting the mathematical relationships between experimental and simulated population histograms, INSIGHT achieves scalability, efficiency and accuracy while entirely avoiding approximate stochastic methods. We demonstrate our method on a synthetic gene network in bacteria and show that a detailed mechanistic model of this network can be estimated with high accuracy and high efficiency. Our method is completely general and can be used to infer models of signal-activated gene networks in any organism based solely on flow cytometry data and stochastic simulations. A free C source code implementing the INSIGHT algorithm, together with test data is available from the authors. mustafa.khammash@bsse.ethz.ch Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.