Abstract
This paper explores the volatility forecasting implications of a model in which the high-frequency market microstructure noise is related to the true underlying volatility. The contribution of this paper is to propose a theoretical framework under which the realized variance, based on the highest frequency to compute returns, may improve volatility forecasting if the noise variance is an affine function of the fundamental volatility. In this new setting, we extend the work of Andersen et al. (2011) and quantify the predictive ability of several measures of integrated variance. We find that the traditional realized variance based on the highest frequency returns outperforms alternative realized measures. We also evaluate the usefulness of our approach by conducting an empirical application and show several improvements resulting from the assumption of time-varying noise variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.