Abstract
The Sierra Ballena Shear Zone (SBSZ) is part of a high-strain transcurrent system that divides the Neoproterozoic Dom Feliciano Belt of South America into two different domains. The basement on both sides of the SBSZ shows a deformation stage preceding that of the transcurrent deformation recognized as a high temperature mylonitic foliation associated with migmatization. Grain boundary migration and fluid-assisted grain boundary diffusion enhanced by partial melting were the main deformation mechanisms associated with this foliation. Age estimate of this episode is >658 Ma. The second stage corresponds to the start of transpressional deformation and the nucleation and development of the SBSZ. During this stage, pure shear dominates the deformation, and is characterized by the development of conjugate dextral and sinistral shear zones and the emplacement of syntectonic granites. This event dates to 658–600 Ma based on the age of these intrusions. The third stage was a second transpressional event at about 586 to <560 Ma that was associated with the emplacement of porphyry dikes and granites that show evidence of flattening. Deformation in the SBSZ took place, during the late stages, under regional low-grade conditions, as indicated by the metamorphic paragenesis in the supracrustals of the country rocks. Granitic mylonites show plastic deformation of quartz and brittle behavior of feldspar. A transition from magmatic to solid-state microstructures is also frequently observed in syntectonic granites. Mylonitic porphyries and quartz mylonites resulted from the deformation of alkaline porphyries and quartz veins emplaced in the shear zone. Quartz veins reflect the release of silica associated with the breakdown of feldspar to white mica during the evolution of the granitic mylonites to phyllonites, which resulted in shear zone weakening. Quartz microstructures characteristic of the transition between regime 2 and regime 3, grain boundary migration and incipient recrystallization in feldspar indicate deformation under lower amphibolite to upper greenschist conditions (550–400°C). On the other hand, the mylonitic porphyries display evidence of feldspar recrystallization suggesting magmatic or high-T solid-state deformation during cooling of the dikes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.