Abstract
The double-stranded RNA (dsRNA) transport protein SID-1 enables systemic RNA interference (RNAi) in Caenorhabditis elegans, whereby silencing initiated by local exposure to dsRNA spreads throughout the animal and to its progeny. Previously, we showed that providing dsRNA in the growth medium of Drosophila S2 cells that express C. elegans SID-1 efficiently triggers RNAi. In these experiments long dsRNA proved to be significantly more effective than short dsRNA in silencing the target gene. Here, we show that equivalent masses of long or short dsRNA accumulate in these cells, indicating that size-dependent silencing is not due to size-selective transport through SID-1. Furthermore, using pulse-chase dsRNA uptake experiments, we show that short dsRNA accumulates more rapidly than long dsRNA. We found that import rates are dependent on dsRNA concentration, consistent with energy-independent, diffusion-limited transport through the SID-1 channel. Comparison of silencing efficiencies between Drosophila S2 cells heterologously expressing SID-1 and primary-cultured C. elegans cells shows similar dsRNA concentration and size dependencies, suggesting that C. elegans regulatory proteins do not measurably enhance or restrict dsRNA transport through SID-1. Finally, we find that coexpressing mutant SID-1 with wild-type SID-1 in S2 cells interferes with SID-1 function, indicating that SID-1 may function as a multimer.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.