Abstract
The splicing regulatory SR protein, 9G8, has recently been proposed to function in mRNA export in conjunction with the export protein, Tap/NXF1. Tap interacts directly with the Mason-Pfizer monkey virus constitutive transport element (CTE), an element that enables export of unspliced, intron-containing mRNA. Based on our previous finding that Tap can promote polysome association and translation of CTE-RNA, we investigated the effect of 9G8 on cytoplasmic RNA fate. 9G8 was shown to enhance expression of unspliced RNA containing either the Mason-Pfizer monkey virus-CTE or the recently discovered Tap-CTE. 9G8 also enhanced polyribosome association of unspliced RNA containing a CTE. Hyperphosphorylated 9G8 was present in monosomes and small polyribosomes, whereas soluble fractions contained only hypophosphorylated protein. Our results are consistent with a model in which hypophosphorylated SR proteins remain stably associated with messenger ribonucleoprotein (mRNP) complexes during export and are released during translation initiation concomitant with increased phosphorylation. These results provide further evidence for crucial links between RNA splicing, export and translation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.