Abstract

We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as the two toric polynomials introduced by Stanley, but allows different algebraic manipulations. The intertwined recurrence defining Stanley's toric polynomials may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric $h$-vector in terms of the $cd$-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric $h$-vector of a dual simplicial Eulerian poset in terms of its $f$-vector. This formula implies Gessel's formula for the toric $h$-vector of a cube, and may be used to prove that the nonnegativity of the toric $h$-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.