Abstract

The short-stature homeobox-containing gene (SHOX) was originally discovered as one of genes responsible for idiopathic short-stature syndromes in humans. Previous studies in animal models have shown the evolutionarily conserved link between this gene and skeletal formation in early embryogenesis. Here, we characterized developmental roles of shox/SHOX in zebrafish embryos and human mesenchymal stem cells (hMSCs) using loss-of-function approaches. Morpholino oligo-mediated knockdown of zebrafish shox markedly hindered cell proliferation in the anterior region of the pharyngula embryos, which was accompanied by reduction in the dlx2 expression at mesenchymal core sites for future pharyngeal bones. In addition, the impaired shox expression transiently increased expression levels of skeletal differentiation genes in early larval stage. In cell culture studies, we found that hMSCs expressed SHOX; the siRNA-mediated blockade of SHOX expression significantly blunted cell proliferation in undifferentiated hMSCs but the loss of SHOX expression did augment the expressions of subsets of early osteogenic genes during early osteoblast differentiation. These data suggest that shox/SHOX maintains the population of embryonic bone progenitor cells by keeping its proliferative status and by repressing the onset of early osteogenic gene expression. The current study for the first time shows cellular and developmental responses caused by shox/SHOX deficiency in zebrafish embryos and hMSCs, and it expands our understanding of the role of this gene in early stages of skeletal growth.

Highlights

  • Leri–Weill dyschondrosteosis (LWD) is an inherited skeletal deformity accompanied by short stature, mesomelia, and Madelung wrist deformity [1]

  • To test if the cell proliferation and cell death are controlled by early developmental shox, we analyzed the levels of phospho-Histone H3 as markers of cell proliferation and active caspase-3 as a cell death marker in shox morpholino oligo (MO) or control MO (ctr MO)-injected zebrafish embryos

  • Since the mesenchymal stem cells (MSCs) are indispensable for developing skeletal organs including cartilage and bone, and since our data showed a possibility that the expression of osteogenic differentiation marker genes were altered in shox knocked down zebrafish embryos, we focused on the role of this gene in human mesenchymal stem cells (hMSCs)

Read more

Summary

Introduction

Leri–Weill dyschondrosteosis (LWD) is an inherited skeletal deformity accompanied by short stature, mesomelia, and Madelung wrist deformity [1]. The LWD gene is linked to abnormalities in the pseudoautosomal region (PAR1) on the sex chromosomes, and to the short-stature homeobox-containing gene (SHOX). The SHOX gene resides within the PAR1 and was first discovered as a gene strongly linked with the LWD [2,3,4]. The phenotypes in LWD are complex, but the major mark of the skeletal deformity is shortening of the zeugopods [5]. Since the most prominent feature of LWD is the defect in cartilages and bones, the primary action of the SHOX is likely exerted in chondrocytes, osteocytes, and potentially in their progenitor cells

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call