Abstract
In this paper we discuss the mechanisms responsible for the formation of the acoustic wave when a shock interacts with a vortex. Experimental measurements have shown that this interaction produces a primarily quadrupolar acoustic wave with a strong compression attached to the shock front. We review earlier work which shows that this strong compression is due to the distortion of the shock. The origin of the quadrupolar component is examined by comparing two-dimensional computations of the shock-vortex interaction to those of an isolated elliptical vortex. The elliptical vortex is similar to the compressed vortex produced when a shock interacts with an initially circular vortex. We concentrate on interactions in which the shock transit time is short. The pressure field of the shock-vortex interaction is compared to that of an analogous isolated elliptical vortex for three cases: a weak shock interacting with a weak vortex, a strong shock interacting with a weak vortex, and a strong shock interacting with a strong vortex. Our results indicate that both shock distortion and vortex compression are important to the formation of the acoustic wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.