Abstract

The shock responses of crystalline Ni with two types of symmetric tilt grain boundaries (STGBs) are studied by large-scale molecular dynamics simulations, with special concerns on the effect of hydrogen segregated STGBs on them. The crystalline Ni with different kinds of H-free STGBs have significantly different plastic responses during the shock processes due to different mechanisms of dislocation emission from the STGBs. The segregation of hydrogen atoms at the STGBs significantly affects the dislocation emission from the H-segregated STGBs, and then heavily affects the shock plastic responses of crystalline Ni with H-segregated STGBs. On the one hand, dislocation emission from the H-segregated STGBs is delayed compared with that from the H-free ones at the low shock velocity, showing the so-called lagging effect. On the other hand, multi-mode dislocation emissions (or dislocation emission on the multi slip systems) are frequently activated from the H-segregated STGBs at the high shock velocity. In addition, the spallation behavior of the crystalline Ni under shock loading is also significantly affected by hydrogen segregation at the STGBs. In the targets with the H-free STGBs, spallation originates mainly from the interior of the grains due to strong interaction and reaction between dislocations there, however, it originates definitely from the H-segregated STGBs due to the reduced GB cohesive strength by hydrogen segregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.