Abstract

Scanning tunneling microscopy on Pt 10Ni 90(100) and Pt 25Ni 75(100) single crystals reveals close-packed rows of atoms, which are shifted by 1 4 〈110〉 along the direction of the rows into a bridge position and slightly outward of the surface. Maximum entropy deconvolution of atomically resolved STM data shows that all atoms between the shifted rows are close to the unreconstructed positions. The density of the shifted rows increases with increasing Pt surface concentration up to a maximum value of each 5th row shifted. The reconstruction shows little dependence on the carbon contamination of the surface, but it is lifted by a full c(2 × 2) coverage of carbon monoxide, which can be imaged simultaneously with the substrate, indicating an on-top position of CO. The driving force of the shifted-row reconstruction is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.