Abstract

Eccentric exercise can produce damage to muscle fibres. Here damage indicators are measured in the medial gastrocnemius muscle of the anaesthetised cat after eccentric contractions on the descending limb of the muscle's length-tension relation, compared with eccentric contractions on the ascending limb and concentric contractions on the descending limb. One damage indicator is a shift of the optimum length for peak active tension, in the direction of longer muscle lengths. The shift has been attributed to an increase in muscle compliance. It is a corollary of a current theory for the mechanism of the damage. With the intention of seeking further support for the theory, in these experiments we test the idea that other damage indicators, specifically the fall in twitch:tetanus ratio and in muscle force are due, in part, to such an increase in compliance. This was tested in an undamaged muscle by insertion of a compliant spring (0.19 mm N(-1)) in series with the muscle. This led to a fall in tetanic tension by 17%, a shift in optimum length of 1.7 mm in the direction of longer muscle lengths and a fall in twitch tetanus ratio by 15%. The fall in tension is postulated to be due to development of non-uniform sarcomere lengths within muscle fibres. It is concluded that after a series of eccentric contractions of a muscle, the fall in force is the result of a number of interdependent factors, not all of which are a direct consequence of the damage process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.